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ABSTRACT 
The effects of viscous dissipation on fully developed two fluid magnetohydrodynamic flow in the presence of 

constant electric field in a vertical channel is investigated using Robin boundary conditions. The fluids in both 

the regions are incompressible, electrically conducting and the transport properties are assumed to be constant. 

The plate exchanges heat with an external fluid. Both conditions of equal and different reference temperatures of 

the external fluid are considered. First, the simple cases of the negligible Brinkman number or the negligible 

Grashof number are solved analytically. Then, the combined effects of buoyancy forces and viscous dissipation 

are analyzed by a perturbation series method valid for small values of perturbation parameter. To relax the 

condition on the perturbation parameter, the flow fields are solved by using the differential transform method. 

The results are presented graphically for different values of the mixed convection parameter, Hartman number, 

perturbation parameter, viscosity ratio, width ratio, conductivity ratio and Biot numbers for both open and short 

circuit. The effects of these parameters on the Nusselt number at the walls is also drawn. It is found that the 

solutions obtained by perturbation method and differential transform method agree very well for small values of 

perturbation parameter. 

 

I. INTRODUCTION: 
The interaction between the conducting fluid and the magnetic field radically modifies the flow, with 

attendant effects on such important flow properties as pressure drop and heat transfer, the detailed nature of 

which is strongly dependent on the orientation of the magnetic field. The advent of technology that involves the 

MHD power generators, MHD devices, nuclear engineering and the possibility of thermonuclear power has 

created a great practical need for understanding the dynamics of conducting fluids. Moreover, there has been 

interest in studying the flow of electrically conducting fluids over surfaces. On the other hand, the heat transfer 

rates can be controlled using a magnetic field. One of the ways of studying magnetohydrodynamic heat transfer 

field is the electromagnetic field, which is used to control the heat transfer as in the convection flows and 

aerodynamic heating. 

The use of electrically conducting fluids under the influence of magnetic fields in various industries has 

lead to a renewed interest in investigating hydrodynamic flow and heat transfer in different geometries. For 

example, Sparrow and Cess [1] and Umavathi [2] studied magneto convection in vertical channel in the 

presence of electric field. Bhargava et al. [3] have studied the effect of magnetic field on the free convection 

flow of a micropolar fluid between two parallel porous vertical plates. Hayat et al. [4] have studied the Hall 

effects on the unsteady hydrodynamic oscillatory flow of a second grade fluid. Recently, Umavathi et al. [5] 

numerically studied fully developed magneto convection flow in a vertical rectangular duct.  

There has been some theoretical and experimental work on stratified laminar flow of two immiscible liquids 

in the horizontal pipe (Charles and Redburger [6], Pacham and Shail [7]). The interest in this configuration 

stems from the possibility of reducing the power required to pump oil in a pipeline by suitable addition of water. 

Shail [8] investigated theoretically the possibility of using a two-fluid system to obtain increased flow rates in an 

electromagnetic pump. Specially, Shail [8] studied Hartmann flow of a conducting fluid which is pumped 

electromagnetically in a channel bounded by two parallel horizontal insulating plates of infinite extent, there 

being a layer of non conducting fluid between the conducting liquid and the upper channel wall. 

Another physical phenomenon is the case in which the two immiscible conducting fluids flow past 

permeable beds. Recent advances in two-fluid flow researchers are remarkable and many things have been 

clarified about various phenomena in two-fluid flow. However, of course, there are still many more things to be 

studied in order to achieve sufficient understanding and satisfactory prediction about two-fluid flow. In 

particular, the microscopic structures of two-fluid flow, such as velocity and phase distributions, interfacial 

structures and turbulence phenomena, are quite important topics and much effort has been made in these 

research areas in recent years. This is partly due to scientific interest in the physical phenomenon of two fluid 

flow and partly due to industrial demands for more precise predictions of two fluid flow behavior in various 
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industrial devices. The coal-fired magnetohydrodynamic generator channel is subjected to an unusual severe 

thermal environment. Postlethwaite and Sluyter [9] presents an overview of the heat transfer problems 

associated with a MHD generator. 

Malashetty and Leela [10] reported closed form solutions for the two fluid flow and heat transfer situations 

in a horizontal channel for which both phases are electrically conducting. Malashetty and Umavathi [11] studied 

two fluid MHD flow and heat transfer in an inclined channel in the presence of buoyancy effects for the 

situations where only one of the phases is electrically conducting. Malashetty et al. [12-14] analyzed the 

problem of fully developed two fluid magnetohydrodynamic flows with and without applied electric field in an  

inclined channel.  Umavathi et al. [15-17] studied steady and unsteady magnetohydrodynamic two fluid flow in 

a vertical and horizontal channel. Prathap Kumar et al. [18, 19] also studied mixed convection of 

magnetohydrodynamic two fluid flow in a vertical enclosure. 

The developing flow with asymmetric wall temperature has been considered by Ingham et al. [20], with 

particular reference to situations where reverse flow occurs. On the other hand, Barletta [21] and Zanchini [22] 

have pointed out that relevant effects of viscous dissipation on the temperature profiles and on the Nusselt 

numbers may occur in the fully developed laminar forced convection in tubes. Thus, an analysis of the effect of 

viscous dissipation in the fully developed mixed convection in vertical ducts appears as interesting. Several 

studies on mixed convection problems for a Newtonian fluid in a vertical channel have already been presented 

in literature. In particular, some analytical solutions for the fully developed flow have been performed. The 

boundary conditions of uniform wall temperatures have been analyzed by Aung and Worku [23]. The boundary 

conditions of uniform wall temperatures on a wall and a uniform wall heat fluxes, have been studied by Cheng 

et al. [24]. The effect of  viscous dissipation on the velocity and on the temperature fields have been analyzed by 

Barletta [25] for the boundary conditions of uniform wall temperatures and by Zanchini [26] for boundary 

conditions of third kind. 

In the past, the laminar forced convection heat transfer in the hydrodynamic entrance region of a flat 

rectangular channel wall has been investigated either for the temperature boundary conditions of the first kind, 

characterized by prescribed wall temperature (Stephan [27], Hwang and Fan[28]), or boundary conditions of 

second kind, expressed by prescribed wall temperature heat flux (Siegal and Sparrow[29]). A more realistic 

condition in many applications, however, will be the temperature boundary conditions of third kind: the local 

wall heat flux is a linear function of the local wall temperature. 

The differential transform scheme (DTM) is a method for solving a wide range of problems whose 

mathematical models yield equations or systems of equations involving algebraic, differential, integral and 

integro-differential equations (Arikhoglu and Ozkol [30] and Biazar et al. [31]). The concept of the differential 

transform was first proposed by Zhou [32], and its main applications therein is solved for both linear and non-

linear initial value problems in electric circuit analysis. This method constructs an analytical solution in the form 

of polynomials. It is different from the high-order Taylor series method, which requires symbolic computation 

of the necessary derivatives of the data functions. With this technique, the given differential equation and related 

initial and boundary conditions are transformed into a recurrence equation that finally leads to the solution of a 

system of algebraic equations as coefficients of a power series solution. Therefore the differential transform 

method can overcome the restrictions and limitations of perturbation techniques so that it provides us with a 

possibility to analyze strongly nonlinear problems.  In recent years the application of differential transform 

theory has been appeared in many researches (Rashidi et al. [33], and Ganji et al. [34]). 

Recently, Umavathi and Santhosh [35, 36], Umavathi and Jaweria [37] studied mixed convection in vertical 

channel using boundary conditions of third kind. The aim of this paper is to extend the analysis performed by 

Zanchini [26] for electrically conducting immiscible fluids. 

 

II. MATHEMATICAL FORMULATION: 
The geometry under consideration illustrated in Figure 1 consists of two infinite parallel plates maintained 

at equal or different constant temperatures extending in the X  and Z  directions. The region 1 2 0h Y    

is occupied by electrically conducting fluid of density 1 , viscosity  1 , thermal conductivity 1k , and thermal 

expansion coefficient 1 , and the region 20 2Y h  is occupied by another immiscible electrically 

conducting fluid of density 2 , viscosity 2 , thermal conductivity 2k , and thermal expansion coefficient 2 .   
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Figure 1  Physical configuration 

 

The fluids are assumed to have constant properties except the density in the buoyancy term in the 

momentum equation  1 0 1 1 01 T T        and  2 0 2 2 01 T T       . A constant magnetic 

field of strength 0B  is applied normal to the plates and a uniform electric field 0E  is applied perpendicular to 

the plates.  A fluid rises in the channel driven by buoyancy forces. The transport properties of both fluids are 

assumed to be constant. We consider the fluids to be incompressible and the flow is steady, laminar, and fully 

developed. It is assumed that the only non-zero component of the velocity q


 is the X-component ( 1,2)iU i  . 

Thus, as a consequence of the mass balance equation, one obtains 

0iU

X





                                                                           (1) 

so that  iU  depends only on Y . The stream wise and the transverse momentum balance equations yields 

Region-I 

   
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
                                    (2) 
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
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                                                 (3) 

and Y -momentum balance equation in both the regions can be expressed as 

0
P

Y





                         (4) 

where 0P p gx  (assuming 1 2p p p  ) is the difference between the pressure and hydrostatic pressure. 

On account of equation (4), P depends only on X so that equations (2) and (3) can be rewritten as 

Region-I 

 
2
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1 1 1 1 1
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g dX g gdY


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                                        (5) 

Region-II 
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                                         (6) 

From equations (5) and (6) one obtains  

Region-I 
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Both the walls of the channel will be assumed to have a negligible thickness and to exchange heat by 

convection with an external fluid. In particular, at 1 2Y h   the external convection coefficient will be 

considered as uniform with the value 1q
 
and the fluid in the region 1 2 0h Y  

 
will be assumed to have a 

uniform reference temperature
1qT . At 2 2Y h

 
the external convection coefficient will be considered as 

uniform with the value 2q and the fluid in the region 20 2Y h 
 
will be supposed to have a uniform 

reference temperature
2 1q qT T . Therefore, the boundary conditions on the temperature field can be expressed 

as 

 
1

1

1
1 1 1 1

2

, 2q
h

Y

T
k q T T X h

Y 


     

                            (13) 

 
2

2

2
2 2 2 2

2

, 2 q
h

Y

T
k q T X h T

Y 


    

                                           (14) 

On account of equations (8) and (11), equations (13) and (14) can be rewritten as 

 
1

23

1 01 1 1
1 1 13

1 1 1

, 2e
q

Bd U dU g
q T T X h

dY dY k

 

 
         at 1

2

h
Y                               (15) 

 
2
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2 02 2 2
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2 2 2

, 2e
q

Bd U dU g
q T X h T

dY dY k

 

 
        at 2

2

h
Y                              (16) 

On account of Equations (5) and (6), there exist a constant A such that  

dP
A

dX
                                     (17) 

For the problem under examination, the energy balance equation in the presence of viscous dissipation can 

be written as  
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From equations (9), (18), (12) and (19) allow one to obtain differential equations for iU namely 
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                         (21) 

The boundary conditions on iU are  

   1 1 2 22 2 0U h U h                                                                 (22) 

together with equations (15) and (16) which on account of equations (5) and (6) can be rewritten as 
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                 (23) 

The continuity of velocity, shear stress, and temperature and heat flux is assumed to be continuous at 

the interface as follows      

   1 20 0U U  , 
   1 2

1 2

0 0dU dU

dy dy
   ,    1 20 0T T  , 
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0 0dT dT
k k

dy dy
                 (24) 

Equations (20)-(24) determine the velocity distribution. They can be written in a dimensionless form by 

means of the following dimensionless parameters 
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where 2D h  is the hydraulic diameter. The reference velocity and the reference temperature are given by 
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
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Moreover, the temperature difference T  is given by 
2 1q qT T T  

 
if

1 2q qT T . As a consequence, the 

dimensionless parameter TR  can only take the values 0 or 1. More precisely, the temperature difference 

ratio TR  is equal to 1 for asymmetric heating i.e.
1 2q qT T , while TR =0 for symmetric heating i.e.

1 2q qT T , 

respectively. Equation (17) implies that A  can be either positive or negative. If 0A , then 0

iU , Re and   are 
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negative, i.e. the flow is downward. On the other hand, if 0A , the flow is upward, so that 0

iU , Re , and 

 are  positive. Using equations (25) and (26), equations (20)-(24) becomes 
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The boundary and interface conditions becomes  
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                                                               (29) 

 

Basic Idea of Differential Transformation Method (DTM) 

The transformation of the k
th

 derivative of a function in one variable is as follows: 

 
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k
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                                                  (30) 

where  u y  is the original function and  U k  is the transformed function which is called the T-function. The 

differential inverse transform of  U k  is defined as 

   
0

k

k

u y U k y




                                                                       (31) 

Equation (31) implies that the concept of the differential transformation is derived from Taylor’s series 

expansion (see Zhou, [32]), but the method does not evaluate the derivatives symbolically. However, relative 

derivatives are calculated by iterative procedure that is described by the transformed equations of the original 

functions. In real applications, the function  u y  is a finite series and hence equation (31) can be written as 

   
0

n
k

k

u y U k y


                                                     (32) 

and equation (31) implies that    
1

k

k n

u y U k y


 

   is neglected as it is small. Usually, the values of n are 

decided by a convergence of the series coefficients. Mathematical operations performed by differential 

transform method are listed in Table 1. 
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III. SOLUTIONS 
Case-I 

The solution of equations (27) and (28) using boundary and interface conditions in equation (29) in the 

absence of viscous dissipation term ( 0Br  ) is given by 

Region-I 

   1 1 2 3 4u c c y c Cosh My c Sinh My                                                                               (33) 

Region-II 

   2 5 6 7 1 8 1u c c y c Cosh p y c Sinh p y                                                                     (34) 

where 
2 2

1p M h r m  , and using equation (29) in equations (5) and (6), the energy balance equations 

becomes 

Region-I 

2
2 21

1 12

1
48

d u
M u M E

dy


 
     
  

                                 (35) 

Region-II 
2

2 2 22

2 22

1
48

d u
mh M r u M E r

bn dy
  

 
     
  

                           (36) 

Using the expressions obtained in equations (33) and (34) the energy balance equations (35) and (36) becomes 

Region-I 

  2 2

1 1 2

1
48 M c c y M E     


                                                                            (37) 

Region-II 

  2 2 2

2 5 6

1
48 M h m r c c y M E r

nb
     


                    (38) 

Case-II 

The solution of equation (27) and (28) can be obtained when buoyancy forces are negligible ( 0  ) 

and viscous dissipation is dominating ( 0Br  ), so that purely forced convection occurs. For this case, 

solutions of equations (27) and (28), using the boundary and interface conditions given by equation (29), the 

velocities are given by 

Region-I 

   1 1 2 3 4u l l y l Cosh My l Sinh My   
    

                                           (39) 

Region-II 

   2 5 6 7 1 8 1u l l y l Cosh p y l Sinh p y   
    

                                            (40) 

The energy balance equations (18) and (19) in non-dimensional form can also be written as 

Region-I 

22

2 2 2 2 21 1

1 12
2

d du
Br M u M E M Eu

dydy

   
         

                                                          (41) 

Region-II 

 
22

4 2 2 2 2 4 2 22 2

2 22
2

d du
Br mkh M rkh E m h u Eh mu

dydy




  
         

                             (42) 

The boundary and interface conditions for temperature are  

 1 1
1 1

11 4

4
1 4 1

2

T

y

d Bi R s
Bi

dy Bi






 
    

 
,  2 2

2 2

21 4

4
1 4 1

2

T

y

d Bi R s
Bi

dy Bi






 
   

 
 , 
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   1 20 0  ,   
   1 20 01d d

dy kh dy

 
                                  (43) 

Using equations (39) and (40) , solving equations (41) and (42) we obtain 

Region-I 

       

    
1 1 2 3 4

4 3 2

5 6 7 8 9 1 2

2 2Br G Cosh My G Sinh My G Cosh My G Sinh My

G yCosh My G ySinh My G y G y G y d y d

      

     
                              (44) 

Region-II 

       

    
2 10 1 11 1 12 1 13 1

4 3 2

14 1 15 1 16 17 18 3 4

2 2Br G Cosh p y G Sinh p y G Cosh p y G Sinh p y

G yCosh p y G ySinh p y G y G y G y d y d

      

     
                          (44) 

 

Perturbation Method (PM): 

We solve equations (27) and (28) using the perturbation method with a dimensionless parameter  (<<1) 

defined as  

Br                                                        (46) 

and does not depend on the reference temperature difference T . To this end the solutions are assumed in the 

form 

         2

0 1 2

0

... n

n

n

u y u y u y u y u y  




                                                          (47) 

Substituting equation (47) in equation (27) and (28) and equating the coefficients of like powers of   to zero, 

we obtain the zero and first order equations as follows: 

Region-I 

Zero-order equations 
4 2

210 10

4 2
0

d u d u
M

dy dy
                                   (48) 

First-order equations 
24 2

2 2 2 2 2 21011 11
10 104 2

2
dud u d u

M M E M u M Eu
dy dy dy

 
     

 
                                        (49) 

Region-II 

Zero-order equations 
4 2

2 220 2

4 2
0

d u d u
M h r m

dy dy
                                    (50) 

First-order equations 

  

4 2

2 221 21

4 2

2

2 2 2 2 2 4 2 220

20 202

d u d u
M h r m

dy dy

du
Br bnkh mh M r E m h u mh E u

dy





 

 
    

 

                         (51) 

The corresponding boundary and interface conditions given by equation (29) for the zeroth and first order 

reduces to  

Zeroth-order  

   10 201 4 1 4 0u u   ,     2

10 200 0u mh u ,   
   10 200 0du du

h
dy dy

 ,     

2 2 2 2 2
2 210 20

10 202 2

1 48
48

d u d u M r mh M E r
M u u M E

nb nb nb nbdy dy

  
       

     

at   0y  ,    
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3 3 2
210 10 20 20

3 3

1d u du d u duM r mh
M

dy dy nbkh dy nbk dy

 
   

 
   at 0y  , 

2 32
2 210 10 10

102 3

1 1 11 4

1 4
48 1

2

T

y

d u du d u RM
M u s M E

dy Bi dy Bi dy Bi


   
           

   
, 

2 3 2 2
2 220 20 20

202 3

2 2 1 4

2

2

1
48

4
1

2

y

T

d u d u duM h r m
M h r mu

Bi Bi dydy dy

R
sbn M r E

Bi








 
     

 

 
    

 

                  (52) 

First-order  

   11 211 4 1 4 0u u   ,     2

11 210 0u mh u ,   
   11 210 0du du

h
dy dy

 ,     

2 2 2 2
211 21

11 212 2

1d u d u M r mh
M u u

dy nb dy nb

 
   

     

at   0y  ,    

3 3 2
211 11 21 21

3 3

1d u du d u duM r mh
M

dy dy nbkh dy nbk dy

 
   

 
   at 0y  , 

2 32
211 11 11

112 3

1 1 1 4

1
0

y

d u du d uM
M u

dy Bi dy Bi dy


 
    

 

, 

2 3 2 2
2 221 21 21

212 3

2 2 1 4

1
0

y

d u d u duM h r m
M h r mu

dy Bi dy Bi dy






 
    

 

                  (53) 

Solutions of zeroth-order equations (48) and (50) using boundary and interface conditions (52) are 

   10 1 2 3 4u z z y z Cosh My z Sinh My                                                                               (54) 

   20 5 6 7 1 8 1u z z y z Cosh p y z Sinh p y                                                                    (55) 

Solutions of first-order equations (49) and (51) using boundary and interface conditions of equation (53) are 

       

       

11 9 10 11 12 10 11

2 2 4

12 13 14 15 16

3 2

17 18

2 2u z z y z Cosh My z Sinh My k Cosh My k Sinh My

k ySinh My k yCosh My k y Cosh My k y Sinh My k y

k y k y

     

    

 

                (56) 

       

       



21 13 14 15 1 16 1 2 28 1 29 1

2 2 4

30 1 31 1 32 1 33 1 34

3 2

35 36

2 2u z z y z Cosh p y z Sinh p y A k Cosh p y k Sinh p y

k ySinh p y k yCosh p y k y Cosh p y k y Sinh p y k y

k y k y

     

    

 

             (57) 

Using velocities given by equations (54)-(57), the expressions for energy balance equations (35) and (36) 

becomes 

 

Region-I 

      

        

       

   

2 2

1 10 11 12

13 14 15

2 2 4 2 3 2 2

16 17 18

2 2 2

9 10 1 2

1
48 3 2 3 2 2

2 4 2 4

2 12 6 2

M k Cosh My M k Sinh My Mk Cosh My

Mk Sinh My k MySinh My Cosh My k MyCosh My

Sinh My k y M y k y M y k M y

M z z y M E M z z y

      


   

     

    

                   (58) 

 



J.C. Umavathi et al Int. Journal of Engineering Research and Applications                   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 9( Version 1), September 2014, pp.114-138 

 www.ijera.com                                                                                                                              123 | P a g e  

Region-II 

      

        

       
   

2 2

2 2 1 28 1 1 29 1 1 30 1

1 31 1 32 1 1 1 33 1 1

2 2 4 2 3 2 2

1 34 1 35 1 36 1

2 2 2

1 13 14 1 5 6

1
48 3 2 3 2 2

2 4 2 4

2 12 6 2

A p k Cosh p y p k Sinh p y p k Cosh p y
bn

p k Sinh p y k p ySinh p y Cosh p y k p yCosh p y

Sinh p y k y p y k y p y k p y

p z z y M E r Er p z z y

 



     


   

     

    

             (59) 

 

Solution with differential transformation method (DTM) 

Now Differential Transformation Method has been applied to solving equations (27) and (28). Taking the 

differential transformation of equations (27) and (28) with respect to k , and following the process as given in 

Table 1 yields: 

 
    

     

      

       

2

0

2 2 2 2

0

1
4 1 2 2

1 2 3 4

1 1 1 1

2

r

s
r

s

U r M r r U r
r r r r

Br r s s U r s U s

Br M E r M U r s U s M EU r





    
   

       

 
    

 





                                 (60) 

 
    

     

       

     

 

2 2

2 2

0

2 2 2 2 4 2

0
2 2

1
4 1 2 2

1 2 3 4

1 1 1 1

2

r

s
r

s

V r M h r m r r V r
r r r r

Br nbkh mh r s s V r s V s

M E r Er r M h r m V r s V s

M Eh r ErmV r



  







    
   

      

  





                                (61) 

The differential transform of the initial conditions are as follows 

       3 4
1 20 , 1 , 2 , 3 ,

2 6

c c
U c U c U U        1

2
0

c
V

mh
 ,   21 ,

c
V

h
  

   

2 12 2
2 4 2

2 1
3 1 112 , 3

2 6

A c
c M c nbkh

M r c nb h
V c M c A U

nb



 
          

 
                          (62) 

Where 

2
2

11

48
48

M E r
A M E

nb nb


     , 

2

12

M rhm
A

nbk


   

 

Using the conditions as given in equation (62), one can evaluate the unknowns 1c , 2c , 3c , and 4c . By using 

the DTM and the transformed boundary conditions, above equations that finally leads to the solution of a system 

of algebraic equations. 

A Nusselt number can be defined at each boundary, as follows: 

 
1

1 2 1

1

2 2 1 1
2

2( )

2 ( 2) (1 )T T
Y h

h h dT
Nu

dYR T h T h R T





      

 
2

1 2 2

2

2 2 1 1
2

2( )

2 ( 2) (1 )T T
Y h

h h dT
Nu

dYR T h T h R T





      

                                              (63) 
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By employing equation (25), in equation (63) can be written as  

 
1

1

2 1
1 4

(1 )

1 4 ( 1 4) (1 )T T
y

dh
Nu

dyR R



 





     

 
2

2

2 1
1 4

(1 1 )

1 4 ( 1 4) (1 )T T
y

dh
Nu

dyR R



 





     

.                                                          (65) 

 

IV. RESULTS AND DISCUSSION 
In this section the fluid flow and heat transfer results for electrically conducting immiscible fluid flow in 

vertical channel are discussed in the presence of an applied magnetic field 0B  normal to gravity and applied 

electric field 0E  perpendicular to 0B including the effects of both viscous and Ohmic dissipations. Robin 

boundary conditions for equal and unequal wall temperatures have been incorporated for the boundary 

conditions. The governing equations which are highly non-linear and coupled are solved by the well known 

perturbation method using the product of mixed convection parameter  and Brinkman number Br as 

perturbation parameter. The solutions obtained by perturbation method cannot be used for large values of 

perturbation parameters . However this condition on   is relaxed by finding the solutions of the basic 

equations using DTM which is a semi analytical method.  The electric field load parameter 0E   corresponds 

to short circuits configuration and 0E  corresponds to open circuit configuration and the values of E  may be 

taken as positive or negative depending on the polarity of 0E . 

In the absence of viscous dissipation ( 0)Br   and mixed convection parameter , exact solutions can be 

obtained. The flow field for asymmetric heating and 0Br   is shown in figure 2. This figure indicates that 

there is a flow reversal near the cold wall for 1000  and there is a symmetric profile for 0  for both 

open and short circuits. 

In the absence of mixed convection parameter , plots of   for equal and unequal Biot numbers are shown 

in figures 3a and 3b respectively for various values of Brinkman number. As the Brinkman number Br  

increases, temperature field is enhanced for both equal and unequal Biot number. The magnitude of 

enhancement at the cold wall is very large for unequal Biot numbers when compared with equal Biot numbers 

for all values of electric field load parameter E . Similar nature was also observed by Zanchini [26] for one fluid 

model for short circuits and in the absence of Hartman number. 

The effect of   and   on the flow field is shown in figures 4a and 4b for open circuit. It is seen that the 

velocity and temperature are increasing functions of  for upward flow, velocity is a decreasing function of   

and temperature is an increasing function of   for downward flow. The enhancement of flow for 0   

implies that a greater energy generated by viscous dissipation yields a greater fluid temperature and as a 

consequence a stronger buoyancy force occurs. One can also  reveal from figures 4a and 4b that the solution 

agree very well between perturbation method and differential transform method for 0  and differs slightly 

for 2  but becomes large for 4  for both buoyancy assisting ( 0)  and buoyancy opposing 

( 0)  flows. Further there is a flow reversal at the cold wall for 500   and at the hot wall 

for 500   . The effects of   and   on the flow was also the similar result observed for one fluid model 

for purely viscous fluid by Barletta [25] for isothermal wall conditions.  

To understand the effects of Hartman number M  and electric field load parameter E , the plots u  and   

are drawn in figures 5a and 5b for equal Biot numbers. It is seen that for both open and short circuits the effects 

of M  is to de-accelerate the flow. This is a classical Hartman result. The plots of u and   for variations of 

viscosity ratio m  is shown in figures 6a and 6b for variations of E . It is seen that as m  increases velocity 

increases in region-I and decrease in region-II for both open and short circuits. Flow reversal is observed at the 

cold wall and the intensity of reversal flow increases for decreasing values of m . The slope at the interface 

suddenly drops for values of 1m   due to the condition imposed at the interface
2

1 2( )u mh u . Figure 6b 

shows that there is no effect of either m  or E  on the temperature field. The figures 7a and 7b refer to the 
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influence of width ratio h  on the velocity and temperature for open and short circuits. As h increases flow 

decreases in both the regions for open and short circuits. However the temperature filed is not affected by E . 

Further the flow reversal is also observed for variations of h  at the cold wall and the intensity of reversal flow 

increases as h  increases. One can observe from figures 6b and 7b that there is no drop of the slope at the 

interface on that temperature owing to the continuity of heat flux at the interface   1 2d dy k d dy  . 

Figures 8a and 8b exhibit the effect of thermal conductivity ratio k  on the velocity and temperature fields. The 

effect of k  is similar to the effect of h  i.e. both the velocity and temperature decreases for increase in the value 

of k  in both regions. Here also there is a flow reversal at the cold wall and the intensity of reversal flow 

increases with increase in k  for all values of E  . 

The plots of u  and   are drawn in figure 9a and 9b for unequal Biot numbers with TR (asymmetric wall 

heating condition) for both open and short circuits. It is seen from figure 9a that there is no flow reversal either 

at cold wall or at the hot wall as observed for equal Biot numbers for all values of E . However the effect of   

on u  and   for unequal Biot numbers remains the same for equal Biot numbers. The magnitude of temperature 

at the left wall for unequal Biot numbers is very large when compared to equal Biot numbers for all values of E .  

Considering symmetric wall heat condition ( 0)TR  , the plots of u  and   are drawn and shown in 

figures 10a, b and 11a, b for equal and unequal Biot numbers for both open and short circuits. It is seen from 

these four figures that both u  and   are increasing functions of   for 0, 1E   . Further the temperature 

profiles are symmetric for equal Biot numbers and the magnitude of temperature at the left wall is very large for 

unequal Biot numbers which was the similar nature observed for asymmetric wall heat conditions. 

Figures 12a, b shows the plots of 1Nu  and 2Nu  for 500,100, 300    versus   for both open and 

short circuits. These figures tells that 1Nu  is an increasing function of 
 
while 2Nu

 
is decreasing function of 

 for both open and short circuits. Further the effects of   on 1Nu and 2Nu is stronger for lower values of   

for buoyancy assisting flow. In order to compare the present results with the earlier published work the values of 

viscosity ratio, width ratio and conductivity ratio taken as 1. The effects of Biot numbers on symmetric wall heat 

conditions and Nusselt numbers in the absence of Hartman number and electric field load parameter are the 

similar result observed by Zanchini [26] for one fluid model.  

Tables 2-4 are the velocity and temperature solutions obtained by PM and DTM for symmetric and 

asymmetric wall heating conditions varying the perturbation parameter   for equal and unequal Biot numbers.  

In Table 2, it is seen that in the absence of perturbation parameter, the PM and DTM solutions are equal for both 

the velocity and temperature fields.  When the perturbation parameter   is increased  2  , it is seen that the 

PM and DTM solutions do not agree.  Similar nature is also observed in Table 3 and 4 for PM and DTM 

solutions.  Table 2 and 3 are the solutions of velocity and temperature for asymmetric wall heating conditions 

for equal and unequal Biot numbers respectively.  Table 2 and 3 also reveals that the percentage of error is large 

at the interface for velocity when compared with the error at the boundaries.  Further the percentage of error 

between PM and DTM is large for unequal Biot numbers when compared with equal Biot numbers.  Table 4 

displays the solutions of symmetric wall heating conditions for equal Biot numbers.  The percentage of error is 

less for symmetric wall heating conditions for equal Biot numbers when compared with asymmetric wall heat 

conditions. 

 

Table 1:   The operations for the one-dimensional differential transform method. 

Original function Transformed function 

)()()( xhxgxy   )()()( kHkGkY   

( ) ( )y x g x  ( ) ( )Y k G k  

dx

xdg
xy

)(
)(   )1()1()(  kGkkY  

2

2 )(
)(

dx

xgd
xy   )2()2)(1()(  kGkkkY  
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)()()( xhxgxy   



k

l

lkHlGkY
0

)()()(  

mxxy )(  
1, if

( ) ( )
0, if

k m
Y k k m

k m



   


 

 

Table 2: Values of velocity and Temperature for 500  and  1, 4, 1TR M E   
 

y 
0  , 1 2 10Bi Bi   2  , 1 2 10Bi Bi   

PM DTM % error PM DTM % error 

-0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

-0.150 0.276790 0.276790 0.00% 0.370820 0.385670 1.49% 

-0.050 1.035680 1.035680 0.00% 1.184140 1.207620 2.35% 

0.000 1.407780 1.407780 0.00% 1.565790 1.590860 2.51% 

0.050 1.675850 1.675850 0.00% 1.830670 1.855350 2.47% 

0.150 1.577240 1.577240 0.00% 1.684980 1.702290 1.73% 

0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

Temperature 

-0.250 -0.357140 -0.357140 0.00% -0.351440 -0.350540  

-0.150 -0.214290 -0.214290 0.00% -0.203310 -0.201580 0.17% 

-0.050 -0.071430 -0.071430 0.00% -0.056990 -0.054750 0.22% 

0.000 0.000000 0.000000 0.00% 0.015240 0.017630 0.24% 

0.050 0.071430 0.071430 0.00% 0.087010 0.089500 0.25% 

0.150 0.214290 0.214290 0.00% 0.229940 0.232520 0.26% 

0.250 0.357140 0.357140 0.00% 0.368830 0.370680 0.19% 

 

Table 3: Values of velocity and Temperature for 500  and  1, 4, 1TR M E   
 

y  0  , 1 20.1, 10Bi Bi   2  , 1 20.1, 10Bi Bi   

PM DTM % error PM DTM % error 

-0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

-0.150 0.884080 0.884080 0.00% 1.060240 1.193770 13.35% 

-0.050 1.334630 1.334630 0.00% 1.575460 1.757670 18.22% 

0.000 1.407780 1.407780 0.00% 1.648480 1.830280 18.18% 

0.050 1.376900 1.376900 0.00% 1.599440 1.767120 16.77% 

0.150 0.969960 0.969960 0.00% 1.109010 1.212970 10.40% 

0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

Temperature 

-0.250 -0.023580 -0.023580 0.00% 0.005940 0.028420 2.25% 

-0.150 -0.014150 -0.014150 0.00% 0.013640 0.034770 2.11% 

-0.050 -0.004720 -0.004720 0.00% 0.019390 0.037730 1.83% 

0.000 0.000000 0.000000 0.00% 0.022080 0.038840 1.68% 

0.050 0.004720 0.004720 0.00% 0.024730 0.039840 1.51% 

0.150 0.014150 0.014150 0.00% 0.029720 0.041100 1.14% 

0.250 0.023580 0.023580 0.00% 0.032630 0.038930 0.63% 

 

Table 4: Values of velocity and Temperature for 0, 4, 1TR M E   
 

y  0  , 1 2 10Bi Bi   2  , 1 2 10Bi Bi   

PM DTM % error PM DTM % error 

-0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

-0.150 0.927020 0.927020 0.00% 0.978550 0.985610 0.71% 

-0.050 1.355770 1.355770 0.00% 1.432300 1.442850 1.06% 

0.000 1.407780 1.407780 0.00% 1.487380 1.498360 1.10% 
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0.050 1.355770 1.355770 0.00% 1.432300 1.442850 1.06% 

0.150 0.927020 0.927020 0.00% 0.978550 0.985610 0.71% 

0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

Temperature 

-0.250 0.000000 0.000000 0.00% 2.325800 2.629610 30.38% 

-0.150 0.000000 0.000000 0.00% 3.518370 3.993670 47.53% 

-0.050 0.000000 0.000000 0.00% 3.704640 4.220740 51.61% 

0.000 0.000000 0.000000 0.00% 3.712810 4.232370 51.96% 

0.050 0.000000 0.000000 0.00% 3.704640 4.220740 51.61% 

0.150 0.000000 0.000000 0.00% 3.518370 3.993670 47.53% 

0.250 0.000000 0.000000 0.00% 2.325800 2.629610 30.38% 

 

V. Conclusions 
The problem of steady, laminar mixed convective flow in a vertical channel filled with electrically 

conducting immiscible fluid in the presence of viscous and Ohmic dissipation is analyzed using Robin boundary 

conditions.  The governing equations were solved analytically using perturbation method valid for small values 

of perturbation parameter and by differential transform method valid for all values of governing parameters.  

The following conclusions were drawn. 

[1] The flow at each position was an increasing function of   for upward flow and decreasing function of   

for downward flow. 

[2] The Hartman number suppresses the flow for symmetric and asymmetric wall heating conditions for all the 

governing parameters for both open and short circuits. 

[3] Flow reversal was observed for asymmetric wall heating for equal Biot numbers and there is no flow 

reversal for unequal Biot numbers. 

[4] The viscosity ratio increases the flow increases in region-I and decreases in region-II for equal Biot 

numbers. The width ratio and conductivity ratio suppress the flow in both the regions for equal Biot 

numbers.   

[5] The Nusselt number at the cold wall was increasing function of   and decreasing function of   at the 

hot wall.   

[6] The flow profiles for short circuit lie in between open circuit for positive and negative values of electric 

field load parameter. 

[7] The percentage of error between PM and DTM agree very well for small values of perturbation parameter. 

[8] Fixing equal values for viscosity, width and conductivity for fluids in both the regions and in the absence of 

Hartman number and electric field load parameter we get back the results of  Zanchini [26] for one fluid 

model. 
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NOMENCLATURE: 

A   constant used in equation (17) 

1 2,Bi Bi  Biot number  i i iq D k  

0B      applied magnetic field 

Br    Brinkman number 
  

2
1

1 0 1U k T    

0E    dimensional applied electric field 

E    dimensionless electric field load parameter
  1

0 0 0E B U   

pc     specific heat at constant pressure 

g    acceleration due to gravity  

Gr    Grashof number  3 2

1 1 1g h T   

k    ratio of thermal conductivities  1 2k k  

h    width ratio  2 1h h  

M    Hartman number  2 2

0 1 1eB D   

1 2,Nu Nu Nusselt numbers 

p     non-dimensional pressure gradient  

P     difference between pressure and hydrostatic pressure 
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1 2,q q     external heat transfer coefficients 

Re     Reynolds number 
  1

1 0 1DU   

TR     temperature difference ratio 

T     temperature  

1 2
,q qT T     reference temperatures of the external fluid 

0T     reference temperature 

iU     velocity component in the X -direction 

 
0

i
U     reference velocity  2 48i iAD   

iu    dimensionless velocity in the X -direction 

X    stream wise coordinate 

x    dimensionless stream wise coordinate 

Y    transverse coordinate 

y   dimensionless transverse coordinate 

 

GREEK SYMBOLS 

1 , 2   thermal diffusivities in region-I and region-II 

1 , 2   thermal expansion coefficient in region-I and region-II 

T   reference temperature difference  
2 1q qT T  

   perturbation parameter  

1 2,    dimensionaless temperatures in region-I and region-II 

1 2,    viscosities of the fluids in region-I and region-II 

1 2,    kinematic viscosities of the fluids in region-I and region-II 

1e , 2e  electrical conductivities of the fluid in region-I and region-II  

r   ratio of electrical conductivities  2 1e e   

1 2,    density of fluids in region-I and region-II 

   dimensionless mixed convection parameter  ReGr  

 

SUBSCRIPTS 

1 and 2 reference quantities for Region-I and II, respectively. 
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